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Abstract: This paper introduces an innovative probabilistic model for assessing
earthquake rupture occurrence. This model is able to account for the complexity
of time and space interactions of ruptures. The rupture occurrence is modeled as
a Multivariate Bernoulli that is updated as a function of the time since the last
rupture at different locations of the fault. A correlation model is introduced to ac-
count for the likelihood of rupture propagation. As a result, significant improve-
ment from current methods is obtained: the ”inconsistency” problem of current
models is overcome by using the Multivariate Bernoulli model. The applicability
of the model is successfully tested on the subduction zone of Peru. This model
was able to closely match the average release of energy and the histogram of the
earthquake magnitudes on the fault.

1 Introduction
Earthquakes have caused major disruption of cities. The 2010 Haiti Earthquake caused more
than 300,000 deaths, and the 2011 New Zealand Earthquake caused damage of $ 20 billion. The
study of the earthquake rupture process is the first key step to analyze any earthquake conse-
quence, from casualties to economic losses. Probabilistic models have been developed to assess
the earthquake’s occurrence, rupture size, magnitude, and location. Poisson models, a subset of
the probabilistic models, have been widely used to assess earthquake rupture occurrence, how-
ever, they are not able to represent the interactions over time (time-dependent models) or space
(i.e. rupture propagation) that characterize earthquakes [12].
Even though several models have been proposed to assess both time and space interaction of
earthquake ruptures, the development of comprehensive models that assesses both interactions
is still an active area of research. There are several models that consider only time interactions
(e.g., Brownian Time Passage distributions (BTP) [10]). They are often used to model a charac-
teristic earthquake of fixed or random magnitude; the magnitude is considered independent of
the time between earthquake occurrences. These models built on previous methodologies that
used the slip-predictable [8] or time-predictable hypothesis [1]. However, these models lack the
treatment of uncertainty and interaction of ruptures occurring at different locations.
More comprehensive models integrated the time and space interactions of the earthquake rup-
tures (e.g. Semi-Markov process [9], (Uniform California Earthquake Rupture Forecast, version
2) UCERFv2 [3], UCERFv3 [4]). These models are based on the discretization of the fault into
small segments. The Semi-Markov process initiates the rupture at one segment and propagated
it to neighboring fault’s segments [9]. While this model incorporates time and space interac-
tions, after selecting the nucleation location, the rule adopted for rupture propagation is based
only on the accumulated slip at the segment where the rupture starts. UCERFv2’s models first
estimated probabilities of any possible rupture on the faults (i.e. any possible segment rupture



configuration). Then, all rupture occurrences are sampled independently to estimate probability
distributions resulting from the rupture model. Results from this procedure revealed a mistmatch
between the initial and final distribution of earthquake interarrival times resulting in ”inconsis-
tency” of the model. Modifications introduced in UCERFv3 reduced the inconsistency, but did
not completely remove it.
This paper proposes an innovative probabilistic model to represent the earthquake occurrence
in a seismic fault that includes the time and space interactions of earthquake ruptures. An im-
portant contribution of this paper is the treatment of the earthquake rupture occurrence as a
joint probability distribution of many small fault segments. As a result, this methodology com-
pletely overcomes the ”inconsistency” problem found in UCERFv2 and UCERFv3. The model
is tested by analyzing the rupture occurrences of large earthquakes on the subduction zone along
the Coast of Lima, Peru.

2 Time and space dependent earthquake rupture model
A probabilistic model that evaluates earthquake occurrence is presented herein. This model
considers the interaction over time (i.e. elastic-rebound theory) and space (i.e. multi-segment
rupture and rupture propagation) of earthquake rupture occurrences in faults. Therefore, the
model relies on the fundamental elastic rebound theory for earthquake occurrence [12], that
states that earthquakes occur when the amount of energy accumulated between tectonic plates
reaches the internal capacity. This theory implies that rupture probabilities decrease after the
occurrence of a large earthquake and then increase as tectonic stresses reaccumulate over time.
The probabilistic model consist of the following steps: 1) discretize the fault into small seg-
ments, 2) find the interarrival time distribution of rupture occurrence of each segment, and 3)
find a spatial correlation function that models the rupture propagation probability (i.e. the influ-
ence of rupture occurrence to neighboring segments). The following explains the probabilistic
models used in this framework.

2.1 Probabilistic models
Figure 1 represents an idealized fault discretized into N elements. This line can represent an
strike-slip fault, or a rectangular subduction fault idealized as a line parallel to the fault strike.
The elements represent the rupture units in the model, and their lengths can be associated with
the smallest earthquake magnitude that can cause damage. Thus the model approximates the
real rupture of earthquakes to the rupture of a certain number of units of the idealized fault. For
example, the red zig-zaged line in the graph represents an earthquake rupture over three units
of the fault.

Figure 1: Discretization of the fault into small segments. The red zig-zag line represents a rupture on the
fault.

Let Xt be the rupture vector at year t, where Xt ∈ {0,1}N , N is the number of elements in
the earthquake fault, and t is a one-year time index. Although in this paper the earthquake
occurrences are tracked in one-year time intervals, the model can take different time intervals
depending on the objective of the analysis. Each element in Figure 1 will have a corresponding
element of the vector Xt , where Xt( j) is the rupture state of the j-th element. Xt( j) is equal 1 if
there is a rupture (i.e. if the segment is in red in Figure 1) during year t, or 0 otherwise, where



j = 1,2, · · · ,N.
Additionally, let Tt be the vector containing the time since the last earthquake up to year t on
each segment, where Tt ∈ NN , N is the number of elements in the fault, and t is the year index.
Tt( j) is the j-th element of the vector Tt corresponding to the time since the last earthquake in
the j-th element, where j = 1,2, · · ·N. According to these definitions, Equation 1 holds. This
equation resets the time since the last earthquake to 1 for year t +1 if there is a rupture on the
j-th element during year t, otherwise, the the time since the last earthquake is increased by 1.

Tt+1( j) = (Tt( j))(1−Xt( j))+1 (1)

Using these definitions, then the statistical model is described as follows. The probability of Xt
conditioned on Tt is estimated using a Multivariate Bernoulli distribution as shown equation 2,
where pt is a vector containing the probabilities of rupture during year t given Tt for each fault’s
element. pt( j) is the j-th element of pt and is the marginal probability of rupture occurrence
at the j-th fault’s element during the year t given that the last rupture occurred Tt( j) years
ago. Therefore, pt( j) can be calculated as shown in equation 3, where t j is the interarrival time
between ruptures at the j-th element.

Xt |Tt ∼Mutivariate Bernoulli(pt) (2)

pt( j) = P[Xt( j) = 1|Tt( j)] = P[Tt( j)+1≥ t j|t j > Tt( j)] (3a)

pt( j) =
P[Tt( j)+1≥ t j > Tt( j)]

1−P[Tt( j)≥ t j]
(3b)

The rupture interarrival time t j is modeled by a Brownian Time Passage (BTP) distribution.
BTP processes represent an incremental stress accumulation on the fault that is result of a fixed
stress rate and a random noise; whenever the stress reaches certain stress threshold, a rupture
is generated. This model has been applied by USGS to estimate the time-dependent seismic
hazard of California [4]; a more comprehensive review of the applicability of this distribution for
modeling earthquake occurrences can be found in [10]. The BTP Probability Density Function
(PDF) for the j-th element is given in Equation 4. The PDF is defined by the parameters µ j and
α j.
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A correlation model is introduced for the Multivariate Bernoulli in order to evaluate the interac-
tion over space of ruptures. This is the influence that a rupture at one specific segment can have
on neighboring segments, or in other words, the propagation effect of ruptures to neighboring
segments. The spherical correlogram, shown in Equation 5, is used for this model. This func-
tion gives the correlation of rupture occurrence between the elements i and j of the fault, and
it is function of the distance dist(i, j) between them. The correlogram model is defined by the
parameter γ .

ρi, j = exp
(
−
(dist(i, j)

γ

)2)
(5)

Using these formulations, the model for multi-segment rupture occurrence at each year is com-
plete. However, there is no close-form solution for the correlated Multivariate Bernoulli in terms



of the marginal probabilities of rupture occurrence pt and the correlation model ρi, j. Therefore,
sampling earthquake occurrences from this distribution is not possible. In order to overcome this
issue, an approximated multivariate Bernoulli model is developed. First, a vector Zt of normally
distributed random variables is introduced as given in Equation 6. The mean is a zero-valued
vector, and the covariance matrix is extracted from the correlogram function in Equation 5.
Then, a transformation is applied to Zt as shown in Equation 7. The inverse normal CDF func-
tion is applied to each element of Zt . Xt( j) will equal 1 if the inverse CDF of Zt( j) is smaller
than pt( j), or 0 otherwise. pt( j) is obtained from Equation 3, which uses the CDF of the BPT
distribution. This approximated distribution, defined in terms of Zt , will preserve the marginal
probability distributions of rupture occurrence pt , but will slightly modify the final correlations
of multi-segment ruptures. Even though the resulting distribution is an approximated version of
the original, this procedure has been successfully applied numerously [6].

Zt ∼N (0,Σ),where Σi, j = ρi, j (6)

Xt( j) = 1{Φ−1(Zt( j))< pt( j)} (7)

Using this procedure, the samples of multi-segment rupture occurrence can be easily obtained
for each year. The next section will show a case study, where all the parameters of this model
are estimated using historic earthquake data, and then applied to evaluate probabilities of future
earthquake ruptures in a subduction zone.

3 Model Applied to Subduction Zones
The model is demonstrated through an application to assess the occurrence of large earthquakes
on the subduction zone along the Coast of Lima, Peru.

3.1 Rupture Earthquake Data
Figure 2 shows the subduction zone off the coast of Peru. The cyan plane shown in the graph
is the region of study. This plane has approximately 770 km along the fault trench, and it has
been identified as one of the main sources of earthquakes in Peru [13]. This plane was idealized
into a line parallel to the trench of the fault (solid blue line), and it was subdivided into ten
equal-length elements. Each element has a length of approximately 77 km, which corresponds
roughly to an earthquake magnitude of 7.5 according to the scaling relationship proposed in
[14]. Therefore, this is the minimum magnitude that the model will analyze. This magnitude
was chosen since it corresponds to the minimum magnitude of the historic earthquake catalog
that was used to calibrate the model.
The seismicity of approximately 450 years was included in the analysis. This catalog is consid-
ered complete for earthquakes larger than 7.5 Mw. Table 1 shows this catalog and the sources
from which this information was extracted. Figure 2 shows the rupture areas of earthquakes
that were recorded by seismic instrumentation. To the right of this graph, a time line of the
rupture events is shown with the corresponding rupture lengths of each event. For the pre-
instrumentation events, estimates of their location were used [2]. For the post-instrumentation
events, the reported areas were projected into the fault trench direction. Previous to the seismic-
instrumentation time, the estimates of rupture length were based on earthquake damage [2].
Table 2 shows the years of rupture occurrence at each fault’s element. Since earthquake rupture
lengths do not match the discretization perfectly, the following rule was used: whenever the
events ruptured less than 50% of a segment length, no rupture was considered to occur on the
segment; otherwise, a rupture was considered to occur on the segment. This is not considered a
limitation of the model as higher accuracy can be obtained by defining smaller element lengths



Table 1: Catalog of large earthquakes’ Mw and rupture lenghts

Year 1586 1619 1664 1678 1687 1725 1746
Mw 8.1 7.85 7.5 7.85 8.4 7.5 8.6

Lrup(km) 175 125 75 125 300 75 350
Source [2] [2] [2] [2] [2] [2] [2]

Year 1940 1966 1970 1974 1996 2007
Mw 8.2 8.1 7.9 8.1 7.5 8.0

Lrup(km) 230 185 115 250 80 160
Source [7] [7] [7] [7] [11] [11]

along the source than those considered herein. The objective here is to demonstrate how the
models works.

Table 2: Years of rupture occurrence of each fault element of Figure 2

Section Label
1 2 3 4 5 6 7 8 9 10

1687 1664 1586 1586 1746 1746 1678 1678 1996 1619
2007 1687 1687 1687 1940 1940 1746 1725

2007 1974 1746 1974 1966 1966 1970
1940
1974

3.2 Model calibration
First, the marginal probabilities of rupture interarrival times for all the ten segments of the fault
are found. For elements with at least three ruptures in the catalog (i.e. at least two interarrival
time samples), the parameters µ j and α j of Equation 4 are calculated using the Maximum
Likelihood Estimator (MLE) method. For elements with two ruptures (i.e. only one interarrival
time sample), the MLE can not be applied to estimate both parameters. Consequently, the Equal
Moment method is used. The mean is set up to the only existing sample time, and the coefficient
of variation is set to the average coefficient of variation of the elements with at least three
ruptures; this coefficient is 0.92. For the elements that ruptured only once in catalog, i.e. no
intearrival time sample, a mean of 450 years and a coefficient of variation of 0.92 is assumed.
Different values of γ of the correlogram model, shown in Equation 5, are studied to determine
the ones that best approximate the earthquake data. The following values of γ were analyzed:
96, 193, 289, 385, and 481 km. Figure 3 shows the correlogram functions for each of these
values.

3.3 Results
This study uses a 100,000-year simulation of the rupture process using Monte Carlo analysis.
The sampling procedure of rupture occurrence for a general nyears number of years is shown in
Algorithm 1. This algorithm uses the calibrated parameters found in the previous subsections.
Figure 4a and b show one realization of the rupture process for the next 10,000 years using a γ

values equal to 96 and 289 km, respectively. The graphs indicate that as the value of γ increases,
the number of events decreases and rupture lengths increase. This occurs since large γ values



Figure 2: Region of study of large Mw earthquake occurrence (cyan quadrilateral), and discretization of
this region in 10 equal-lenght sections (dashed blue lines). Rupture lengths of previous large

earthquakes are shown (pink lines) on their respective sections. The label of each section is shown
inside of the pink shapes.

generate stronger correlations as seen in Figure 3, and therefore, the probability of earthquake
propagation to neighboring elements increases so that the elements tend to rupture together
rather than individually.
In order to verify that the model can replicate the complexity of the rupture process in this
sudbuction zone, the average annual release of energy in the historical catalog is compared to
the ones obtained from the model for the different γ values. The energy release of the catalog
is calculated by uniformly distributing the seismic moment, M0, over each of the elements that
rupture. M0 is calculated from the relationship proposed by Hanks and Kanamori (Equation 8,
where M0 is in units of 10−7Nm) [5] using the Mw values from Table 1. At each element, all
releases of M0 were added and divided over the 450 years. This is shown in black in Figure
5a. An identical procedure is followed to estimate the average annual release of M0 for the



Figure 3: Exponential variogram for γ = 96, 193, 289, 385, and 481 km .

Algorithm 1 Sample rupture realizations
1: procedure SAMPLING(nyears)
2: Initialize Σ as a NxN matrix
3: for j = 1, · · · ,N do
4: Initialize T1( j) as the number of years since the last rupture at segment j until today.
5: for k = 1, · · · ,N do
6: Calculate Σ( j,k) as ρ j,k in Equation 5.
7: end for
8: end for
9: for t = 1, · · · ,nyears do

10: Sample Zt using Equation 6.
11: for j = 1, · · · ,N do
12: Calculate pt( j) using Equation 3.
13: Find Xt using Equation 7.
14: Find Tt+1 using equation 1
15: end for
16: end for
17: end procedure

simulation; M0 is averaged over the 100,000 years of simulation. These results are also shown
in Figure 5a. This plot indicates that the model can reproduce the shape of the annual average
release of M0. The γ values of 193 and 289 km give the results that match the catalog the best.
While there is a ”bump” at element 3 that the model cannot represent well, the energy releases
at all other segments are well represented.

Mw =
2
3

log(M0)−10.7 (8)

The histogram of Mw of the historic catalog is next compared to the histograms resulting from
the model. Figure 5b shows this comparison. The histogram from the historic catalog is shown in
black. These results indicate that γ values of 193 and 289 km match very well the distribution of
Mw from the historic catalog. These γ values were the same ones that showed the best agreement
in the average annual release of M0 in Figure 5a, therefore, from both perspectives: preserving
the average annual release of M0 and the histogram of Mw, these values can be used to represent



Figure 4: 10,000 years of simulated rupture occurrence. a) γ = 96, b) γ = 289 km.

Figure 5: Historic catalog vs. model results. a) Average annual M0 release, b) distribution of Mw

the rupture propagation behavior for large earthquakes on the subduction zone along the Coast
of Lima.

Figure 6: Comparison between initial and simulated distribution of rupture interarrival time of element
4 of the fault.



Finally, the interarrival time distribution of segment 4 is compared to the results from the simu-
lations. As stated previously, one main challenge of the time-dependent statistical models is to
overcome the ”inconsistency” of previous models: the initial assumed distributions of rupture
interarrival time were different from the ones resulting from the simulations. Specifically, there
was an overestimation of the probabilities at the lower tail of the distribution [3, 4]. In order
to overcome this inconsistency, an intrinsic, ”consistent” model is applied. The multi-segment
rupture occurrences are modeled using a joint probability distribution with a spatial correla-
tion model scheme. Therefore, marginal distributions of interarrival time distributions at each
segment remain the same in the simulations. Figure 6 shows the initial assumed distribution of
rupture interarrival time for segment 4 in black. This distribution is compared to the histogram
resulting from the simulation in Algorithm 1. Since the model is intrinsically consistent, it can
be seen that this histogram converges to the black curve.

4 Conclusions
This paper presents a probabilistic model for assessing earthquake rupture occurrence. The
aim of this model is to extend current probabilistic methodologies to comprehensively evalu-
ate the interactions over time and space (i.e. rupture propagation) of earthquake ruptures. The
”inconsistency” of current methodologies is addressed by modeling multi-segment earthquake
rupture using a multivariate Bernoulli distribution. The multivariate distribution is function of
1) marginal rupture probabilities at different fault segments estimated according to the time
since the last rupture at each segment, and 2) a spatial correlation function that models rupture
propagation from individual segments to their neighbors.
The case study evaluates earthquake rupture occurrence of large events in the subduction zone
of Lima using the model presented herein. The correlation function is calibrated to find the
parameters that best represented the rupture process of this subduction zone. Results from this
calibration indicated that this model is capable of matching 1) the average seismic moment re-
lease on each segment of the fault with reasonable accuracy, and 2) the histogram of earthquake
magnitude occurrence on the fault of the earthquake catalog of the last 450 years. Additionally,
the ”consistency” of the methodology is displayed by showing that the proposed probability
distribution of interarrival times at segments matched the simulations.
These findings show that the model can capture the complexities of the earthquake rupture pro-
cess. Still, further work is needed to make this model more robust: 1) Physics-based models can
be coupled with this probabilistic methodology to enlarge the timespan of the historic earth-
quake catalogs. Large earthquakes have interarrival times of hundreds, and sometimes even
thousands of years, and therefore, this information cannot be estimated with statistical con-
fidence by using historic catalogs that do not have a long timespan. Catalogs resulting from
physics-based models can address this issue. 2) The functional form of the spatial correlation
model of earthquake occurrence can be directly explored from data. In this paper, an spherical
form was used, however, historical or physics-based catalogs can be used to evaluate the validity
of this form.
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