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Regional Multiseverity Casualty Estimation
Due to Building Damage Following a Mw
8.8 Earthquake Scenario in Lima, Peru

Luis Ceferino,” Anne Kiremidjian,” and Gregory Deierlein®

This paper presents the application of a rigorous probabilistic framework that
estimates the number, severity, and distribution of casualties over a region.
A brief summary of the model is included in this paper. The application is
for casualties resulting from a Mw 8.8 earthquake scenario occurring on the sub-
duction fault along the coastline of Lima, Peru. The case study demonstrates an
application of the casualty model, including the procedures for acquiring the
required information, the selection of model parameters, and a step-by-step expla-
nation of the model-solving algorithms. The model provides an estimate of the
joint probability distribution of multiseverity casualties, including spatial and
across-severity correlations. This paper also shows how the model can be useful
for (1) estimating 90th-percentile casualties, (2) identifying unsafe communities
and structural typologies, and (3) providing evidence to support hospital
collaboration policies across different districts to increase the patient treatment
reliability. Additionally, the results demonstrate that empirical fatality prediction
methodologies can underestimate fatality rates in countries with scarce and out-
dated fatality data. [DOI: 10.1193/080617EQS154M]

INTRODUCTION

Casualties resulting from large earthquakes have resulted in heavy demands for health
services on hospitals in many countries around the world. These demands can reach to tens
(or even hundreds) of thousands (e.g., Turkey in 1999, China in 2008, Haiti in 2010; U.S.
Geological Survey [USGS] 2015). Risk mitigation policies can reduce the number of casual-
ties by decreasing buildings’ vulnerabilities, and emergency planning can make the treatment
of injuries more efficient and successful by improving the hospital functionality or enhancing
the patient transportation capacities. Both risk mitigation and emergency planning measures
to reduce earthquake injuries and fatalities can be informed by earthquake scenario studies
that evaluate the casualty risk. The predictive studies can quantify statistics on the expected
number of casualties, identify vulnerable infrastructure and communities, and explore the
benefits of implementing emergency plans and mitigation policies.

This paper presents a predictive study of multiseverity earthquake casualties in Lima,
Peru. The city is subjected to a Mw 8.8 earthquake scenario occurring at nighttime on
the subduction zone off the coast of Peru. A probabilistic casualty model, developed
previously by the authors (Ceferino et al. 2018), is implemented step by step. Two alternative
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algorithms to solve the model are described herein. A brief summary of the casualty
estimation model is included in this paper for completeness.

Key results of this study include the following: (1) estimation of casualties with varying
severities, including confidence intervals, to assess post earthquake demands for hospital
emergency services; (2) identification of the most vulnerable districts and building structural
typologies in the city (i.e., with highest casualty rate); and (3) demonstration of how a col-
laborative hospital system response across districts improves the treatment reliability com-
pared with a noncollaborative response (i.e., each district only treats casualties within
corresponding jurisdictions). The study also shows that fatality rates obtained from Prompt
Assessment of Global Earthquakes for Response (PAGER, Jaiswal et al. 2009) in countries
without recent earthquake casualty data, or with fast-changing urban infrastructure, may be
underestimated significantly.

The paper begins with a brief outline of the probabilistic casualty model and the two
numerical algorithms proposed to solve the casualty model. Next, the paper describes the
application, including the sources of information, the parameters of the probabilistic modules
of the model, and the step-by-step analysis procedure for both algorithms. Finally, the result-
ing casualty estimates, as well as a discussion of their usefulness for policy making and
emergency planning, are presented.

BRIEF DESCRIPTION OF THE MULTISEVERITY CASUALTY FRAMEWORK

Ceferino et al. (2018) presented a summary of earthquake epidemiology and proposed a
probabilistic formulation for modeling of multiseverity casualties caused by earthquake
damage over the affected region. Previous earthquake epidemiology studies reported that
earthquake casualties, injury types, and injury severities depend on the complex interaction
of the following: earthquake magnitude and location, the type and vulnerability of buildings’
structural and nonstructural components, building uses and occupancy levels at the earth-
quake occurrence time, age and gender of individuals, and individuals’ actions during
the earthquake (Goncharov and Frolova 2011, Johnston et al. 2014). Most, though not
all, of these components were included in the formulation presented by Ceferino et al.
(2018) and applied in this study. The probabilistic formulation is divided into the following
three modules:

1. The Ground Motion Intensity module estimates peak ground accelerations (PGAs)
and spectral accelerations [Sa(T)] over the region of interest. Ground motion pre-
diction equations (GMPEs, e.g., Zhao et al. 2006) along with models that account
for between- and within-event correlations across vibration periods and building
locations (e.g., Goda and Atkinson 2009, Markhvida et al. 2018, respectively)
are required as input of the module. Additionally, this module requires information
on the Earthquake Event and the Soil Condition information, where:

e The Earthquake Event information defines the earthquake scenario that will be
analyzed, including the earthquake magnitude, the earthquake rupture dimen-
sions, and its location along the seismic fault.

e The Soil Condition information consists of the values of shear wave velocities
of the top 30 m (V) of the sites in the region of interest.
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2. The Building Damage module estimates the damage in the buildings affected by the
ground shaking. Parameters that define relationships between ground motion and
damage probability are required for each structural typology. This module requires
the Building Structural Typology information, which includes the identification
(or estimation) of the structural typologies of all buildings and their locations.

3. The Population Health State module estimates the casualties (i.e., multiseverity inju-
ries and fatalities) caused by damaged infrastructure (from the Building Damage
module). Parameters that define the probability of occupants’ injury severity for
the given building damage are required for each structural typology. This module
requires Building Occupancy Dynamics information, which defines the occupancy
of each building in the region according to the time of the earthquake occurrence
(e.g., during commuting hours, the working day, or nighttime).

NUMERICAL EVALUATION DESCRIPTION

The objective is to estimate the joint distribution of the multiseverity casualties over a
region defined by a vector Iy that contains Nyg elements. Each element in I represents the
number of population with a different casualty severity. The probability distribution of I
cannot be solved in closed form because of the complexity of the probabilistic models. When
the number of buildings in the study region is small, interpolation or quadrature-based meth-
ods can be applied. For a large number of buildings, these methods are not able to solve the
problem. In such cases, the following two numerical algorithms have been shown to work
well in Ceferino et al. (2018) to solve the casualty estimation.

ALGORITHM 1: FORWARD MONTE CARLO

The first algorithm is based on forward Monte Carlo simulation. As shown in Figure 1a,
N a1 realizations of health states I are sampled, which are then used to calculate the mean
and variances of casualties for different casualty severities, correlations among different
health states, or, more generally, the joint probability distribution of Iy. Each sample of
I is estimated by first sampling the earthquake ground motion intensities (in the Ground
Motion Intensity module) and then sampling the building damage states (in the Building
Damage module) and corresponding casualties (in the Population Health State module).
Each sample of I is estimated by aggregating all casualties occurring in the region.

To estimate spatial correlations of health states across different communities, the
algorithm is modified as follows (see Ceferino et al. 2018 for details). For each casualty
realization, m, two aggregated casualty vectors are found, Iy, and Ir,, each of which corre-
sponds to a different community of the city. They are calculated as the sum of casualty vec-
tors in buildings over their corresponding geographical regions. Then, using these sets of
samples, the covariance (and correlations) between Iy; and Iy, are estimated. It should
be noted that the city can be subdivided into more than two communities, and correlations
of health states between any pair of communities can be found through the same process.

ALGORITHM 2: MONTE CARLO AND CENTRAL LIMIT THEOREM

The second algorithm is based on a combination of Monte Carlo analysis and the Central
Limit Theorem (CLT). Figure 1b shows a flow diagram of this algorithm. When the number
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Figure 1. Flow diagram of two algorithms of the model: (a) Algorithm 1; and (b) algorithm 2.

of casualties is large, the joint probability distribution of I can be estimated based on CLT.
Previously, Ceferino et al. (2018) proved the validity of this algorithm for cases where the
mean number of casualties is larger than 100 (i.e., errors lower than 2 x 102 in the CDF
estimate of casualties conditioned on ground motion). This algorithm gave valid results for
cases with even lower numbers of casualties, but either a special individual inspection or
statistical testing (e.g., two-sample Kolmogorov—Smirnov test) were needed to support
the validity of the results. The probability P[I7] can be estimated by averaging all the
Niea. of P[I7|Sa]. Other statistics of interest can be calculated without any requirement
on the number of casualties, for example, mean and variances of casualties for different seve-
rities, correlations among different health states, and spatial correlations of health states
across different communities. As seen in Figure 1b, in this algorithm, the Building Damage
module, the Population Health State module, and the aggregation of casualties over the
region are coalesced, and the casualty vector, Iy, conditioned on the ground motion intensity,
is represented as a multivariate normal distribution. This makes the algorithm significantly
faster than Algorithm 1.

To estimate spatial correlations of health states across different communities, Algorithm
2 is slightly modified. For each casualty realization m, the covariance matrix X, r,,|sq)
between health states of two communities for a given ground motion realization can be
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readily found (see Ceferino et al. 2018 for details). Using the covariance realizations, the final
covariance (and correlations) between Iy; and Iy, can be estimated. Similar to Algorithm 1,
a large region can be subdivided into more than two communities, and correlation of health
states between any pair of communities can be found through the same process.

CASUALTY MODEL APPLICATION

This section demonstrates an application of the formulation by assessing the casualty
occurrences for a large earthquake scenario in Lima, Peru. Here, the following is shown:
(1) the sources of information and the parameter selection for the probabilistic modules;
(2) a step-by-step explanation of the sampling process of Algorithms 1 and 2; (3) the variety
of results and information that are obtained, including the identification of communities and
structural typologies that are the most susceptible to damage in an earthquake, the correla-
tions between casualty severities, and the spatial correlation of casualties across commu-
nities; and (4) a demonstration of how this methodology can provide evidence for
supporting a collaborative hospital response across communities rather than an individual,
within-community response.

CASE STUDY DESCRIPTION

The model is applied to an earthquake scenario of magnitude 8.8 that is assumed to occur at
night. This is to represent the earthquake that occurred in 1746 at the subduction zone along the
coast of Lima (Beck and Nishenko 1990), which is the largest known event to have affected
Lima. Over the past few decades, the population of Lima has grown significantly, with a current
population of almost 10 million people. The fast population growth spurred massive new hous-
ing developments built with no engineering expertise or proper design. As the last big earth-
quake (Mw 8.0) occurred in 1974, most of the new infrastructure has not experienced a major
seismic event. Therefore, this scenario study can be relevant for disaster mitigation planning in
the city. The earthquake rupture dimensions and location are shown in Figure 2a, and the spatial
distribution of people affected by the earthquake is shown in Figure 2b. The following sections
include details of (1) the information sources and parameters of the probabilistic models and (2)
the step-by-step procedure of Algorithms 1 and 2 for the case study.

Information Sources and Model Parameters

1. Ground Motion Intensity module: The distribution of ground motion intensities in the
study region was assessed by coupling the contributions of median ground motions
and between- and within-event correlation of ground motion residuals. The GMPE
proposed by Zhao et al. (2006) was used to estimate the median ground motions and
the within- and between-event variances. OpenQuake software (Silva et al. 2014) was
used to estimate the median ground motion values across the region at 1 x 1 km grid
points. The within-event residuals are estimated using the methodology proposed by
Markhvida et al. (2018), and the between-event residuals are estimated using the
model proposed by Goda and Atkinson (2009).

e Earthquake Event information: The rupture studied here is a Mw 8.8 event in the
subduction zone that replicates the 1746 Lima earthquake (Beck and Nishenko
1990) based on the rupture location estimated by Dorbath et al. (1990).
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Figure 2. Different information sources of the model. (a) Earthquake rupture; (b) distribution
of population; (c) shear wave velocity (m/s); (d) three-story nonductile confined masonry; and
(e) five-story ductile concrete wall.

The rupture dimensions were estimated using scaling relationships proposed by
Wells and Coppersmith (1994). The red rectangle shown in Figure 2a represents
the ruptured area, where the dashed areas show the extent of Lima city. The
geographical information system (GIS) files containing the geometry and loca-
tion of the rupture are provided in the online Appendix.

e Soil Condition information: Vg values, shown in Figure 2c, were inferred
from existing microzonation maps for Lima (i.e., Aguilar et al. 2013) based on
soil types recommended in Ministerio de Vivienda (2016). Where microzona-
tion information was not available, Vg, was estimated from the slope of the
terrain using the equation proposed by Allen and Wald (2007). The Vg3, map
is provided in the online Appendix.
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2. Building Damage module: Fragility functions developed for South American build-
ings were used for estimating the building damage (Villar-Vega et al. 2017). The
fragility function set has detailed categories of structural typology, varying accord-
ing to the structural system, number of stories, and ductility properties. In total, 36
structural typologies were considered. The list of structural typologies is provided in
the online Appendix, along with the intensity measure inputs of the fragility function
for each typology. The 36 categories use either PGA, Sa(0.3), or Sa(1.0), all of
which are modeled in the Ground Motion Intensity module. A set of six damage
states were considered: ds; — None; and ds, — Slight; ds; — Moderate; ds; —
Extensive; dss — Complete without structural collapse; dsq — Complete with struc-
tural collapse. Villar-Vega et al. (2017) provides fragility functions for the first five
damage states but not for “structural collapse” (dsg). The fragility function for (dse)
was found as the product of the fragility function for complete damage (dss) and a
rate for structural collapse provided in HAZUS (Federal Emergency Management
Agency [FEMA]2015). These rates were extracted from HAZUS’s structural typol-
ogies. The online Appendix also provides the assumed equivalences between
HAZUS and the typologies used in this application. Figure 3a and 3b show the
fragility functions for three-story nonductile confined masonry and five-story duc-
tile reinforced concrete wall buildings, respectively. It can be seen that the nonduc-
tile confined masonry structures, which are assumed to have been built without
seismic design considerations, are considerably more vulnerable than the ductile
reinforced concrete wall buildings, which are assumed to be built following modern
seismic design requirements.

e Building Structural Typology Information: The number of buildings cor-
responding to each typology was obtained at a district level from existing
studies (GEM Secretariat 2015, Yepes-Estrada et al. 2017). In order to
obtain a finer resolution of building spatial distribution, the buildings of
each typology were redistributed within the districts according to the popu-
lation spatial distribution. The redistribution was directly proportional to
the number of people in a spatial grid of population per square kilometer.
The grid was obtained from LandScan (Oak Ridge National Laboratory
2013), and it represents the 24-hour average number of people occupying
each square kilometer. The final spatial distribution of building typologies
is provided in the online Appendix in GIS format. Figure 2d and 2e show
the estimated spatial distributions of three-story nonductile confined
masonry and five-story ductile reinforced concrete wall buildings. The
graph indicates that there are fewer five-story ductile reinforced concrete
wall buildings than three-story nonductile confined masonry buildings.
Additionally, the former are located mostly in the center of the city, whereas
the latter are located on the peripheries of the city; this exemplifies that the
more vulnerable buildings (see Figure 3a) are mostly in the periphery.

3. Population Health State module: The following five health state categories proposed
by HAZUS were adopted: s; — Noninjured; As, — Severity 1; hsy — Severity 2; hs, —
Severity 3; and hss — Fatality. Casualty Severity 1 represents the individuals whose
treatment does not require hospitalization; Casualty Severity 2 represents individuals
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Figure 3. Fragility functions: (a) Three-story non-ductile confined masonry; and (b) five-story
ductile concrete wall. Probabilities of occupant casualty occurrence: (c) Three-story non-ductile
confined masonry; and (d) one-story light wood.

whose treatment requires hospitalization, but the injuries are not life-threatening in
the short term; and Casualty Severity 3 represents individuals whose treatment
requires immediate hospitalization, as their injuries are life-threatening in the
short term. Rates of casualties conditional on damage states from HAZUS are
used herein (FEMA 2015), where the rates vary according to structural typology.
These rates are used as marginal probabilities that an occupant has a certain health
state given the building damage state. The probability of not being injured was cal-
culated so that the sum of all possible health states adds to one. Because the structural
typologies of HAZUS are not identical to the typologies used in this application, the
HAZUS rates were mapped to the typologies used in this case study. This
mapping is the same as the one used for collapse rates in the Building Damage
module and is shown in the online Appendix. The typologies were chosen in
terms of similar construction material, building weight and height, and structural
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system so that the probability of occupant casualty given damage is similar. The
casualty rates can be found in FEMA (2015). Figure 3¢ shows a stacked bar
chart of these probabilities for each of the damage states of three-story nonductile
confined masonry buildings. It can be seen that for nondamage, slight, and moderate
damage (ds, ds,, ds3), the probability of any casualty is either zero or very low. For
extensive and complete damage without collapse (ds,, dss), the probability of being
injured with severity 1 starts to be significant. For collapse (dsg), the probabilities of
being injured increase, and the probability of fatality is significant (10%). In general,
lighter structures have smaller casualty probabilities than heavier ones. This is exem-
plified in Figure 3d, which shows the relatively low casualty probabilities for one-
story light wood buildings. It is known that the HAZUS casualty rates were obtained
using expert opinion within the United States context. Though data on casualty rates
are scarce, the fatality rates from HAZUS were verified to closely match fatality rates
in collapsed buildings found in developing countries. The fatality rate estimated from
the data collected in the 2005 Pakistan earthquake (Noh et al. 2017) was 10.7%,
which is close to the rates (10%) of most of the building typologies in HAZUS.
Therefore, these data support the use of the HAZUS casualty rates in the case
study for Lima.

*  Occupancy Dynamics Information: The occupancy of buildings was estimated
from the LandScan information (Oak Ridge National Laboratory 2013).
Figure 2b shows the population per square kilometer as obtained from Land-
Scan and distributed to each building proportionally to the buildings’ number
of stories and estimated footprint areas. It was assumed that all people were
within the assigned building for the nighttime occupancy. The relative gross
areas per each typology and the estimated spatial distribution of building occu-
pants are provided in the online Appendix. While this case study
considered only the nighttime occupancy, other occupancies (e.g., during
the working day or commuting hours) would need to be evaluated for a
more complete assessment of the casualty risk.

Flow of Analysis in Algorithms 1 and 2

The two algorithms presented previously were used to estimate the joint distribution of
the multiseverity casualty occurrence. The following paragraphs describe the step-by-step
procedures for applying the two algorithms:

1.

Ground Motion Intensity module: The ground motion intensities, PGA, Sa(0.3s),
and Sa(1.0s) are sampled at the respective building locations according to their fra-
gility function input requirements. First, the median intensity values are estimated
using the Earthquake Event information, the Soil Condition information, and the
GMPE (Zhao et al. 2006). Realizations of these intensities are then estimated by
calculating within-event and between-event residuals according to the models pro-
posed by Markhvida et al. (2018) and Goda and Hong (2008), respectively. Results
of this step are shown in Figure 4a and 4b, which show one realization of PGA and
Sa(0.3s) over the region. Each of the graphs shows that the regions with high
(or low) ground motions are clustered in space, revealing the spatial correlation
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Figure 4. Results from algorithm 1. One realization of ground motion intensities: (a) PGA; and
(b) Sa(0.3s). One realization of collapsed houses (units/km?): (c) 5-story concrete wall; and (d)
three-story confined masonry. One realization of casualties (per km?): (e) severity 3; and (f) fatal-
ities. Panels (a, c, f) are reprinted with permission from Ceferino et al. (2018).

of the model. Additionally, regions with high (or low) PGA and Sa(0.3s) values are
the same, highlighting the close correlation between PGA and Sa(0.3s).

2. Building Damage module: Only Algorithm 1 samples the damage state conditioned
on the ground motion intensities. Algorithm 2 skips this step. The damage state of
each building, given the ground motion at the site, is sampled independently from
other buildings. The probability of being in different states is calculated using the
fragility functions for respective structural typologies. Figure 4c and 4d show one
realization of five-story ductile reinforced concrete wall and three-story nonductile
confined masonry buildings, respectively, that collapsed because of the ground
motion realization shown in Figure 4a and 4b. As expected, there are fewer collapses
of ductile reinforced concrete wall buildings. Correlation between the collapses
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across these two different structural types is apparent owing to the correlation of the
ground motion intensities.

3. Population Health State module: Only Algorithm 1 samples the occupants’ health
states conditioned on the building damage states. Algorithm 2 skips this step. The
occupants’ health states are independently sampled for each building according to
the building damage. The probability of being at any health state is given for
each structural typology for each possible damage state. Within each building, the
health states of the occupants are sampled using a multinomial distribution with
as many trials as number of occupants in the building. Figure 4e and 4f show the
realization of the number of casualties with severity 3 and the fatalities, respectively.
It can be seen that there is correlation over the space and across different health states.
The number of people with severity 3 and casualties are high (or low) in roughly the
same places, which demonstrates the correlation with building damage and collapses.

4. Aggregated casualties: To calculate the casualties over all the region, Algorithm 1
sums the casualties over the whole region for each of the health states. On the other
hand, Algorithm 2, which skipped the sampling of damage states and casualty
occurrence at each building, requires the calculation of the mean casualty vector
and covariance casualty matrix given the ground motion intensity realization.
Then, the probability of the aggregated health states’ population is found using
a multivariate normal distribution. Figure 5a and 5b show a comparison of the
results of one sample resulting from Algorithms 1 and 2. The red dot in Figure 5a
indicates the aggregated casualty realization for injuries with severity 3 in the x-axis
and fatalities in the y-axis based on the sum of casualty realizations determined by
Algorithm 1 and shown in Figure 4. The joint normal distribution of the total num-
ber of injured with severity 3 and fatalities resulting from Algorithm 2 are shown by
the black contours. These contours were calculated using the same realization of the
ground motion intensities shown in Figure 4a and 4b. The number of casualties with
severity 3 are compared in Figure 5b, in which the realization from Algorithm 1 is
shown with the red dashed line, and the distribution from Algorithm 2 is shown with
the black bell curve.
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Figure 5. Comparison of Algorithms 1 and 2: (a) Severity 3 and fatality; and (b) severity 3.
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This subsection has described the procedure for obtaining one realization of the multi-
severity casualty model. The next subsections show the set of possible results that this meth-
odology generates by using and combining many casualty realizations. In terms of
efficiency, Algorithm 2 is faster than 1, but it only can be reliably used when there is a
sufficiently large number of casualties. Other statistics (e.g., mean, variances, and correla-
tions) can be found without any requirement on the number of casualties. For the whole
Lima region, Algorithm 2 is as accurate as Algorithm 1, as shown in Ceferino et al. (2018).

ANALYSIS OF RESULTS

This subsection describes the results and information that can be extracted from the casualty
analysis and the potential use of these results to support risk mitigation policy decision making.

Region-Wide

Multiple realizations of Algorithm 2 were combined to obtain the final distribution of
casualties in Lima city. Figure 6a and 6b show the probability distribution of the total number
of injured with severity 3 and fatalities, respectively. Note that the normal distributions from
the sampling process of Algorithm 2 had to be discretized, as the number of casualties can only
take non-negative integers. The graphs show that these final distributions are very skewed.
Means and standard deviations for each health state are reported in Table 1, in which the
coefficients of variation range from 70% to 80% (except for the noninjured health state).
The fourth and fifth columns of Table 1 show the likelihood of the interval [u — o, u + o]
for each health state. The probabilities associated with these intervals are close to 0.70.
The fourth column shows the 90th percentile for each of the health states (i.e., there is
only a 10% chance to exceed these values). This percentile can be used as a target for
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Figure 6. Distribution of casualties with different severities in Lima city: (a) Severity 3; and
(b) fatalities.
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Table 1. Summary of the aggregated multiseverity casualty estimations in Lima city

Health state u c [ —o,u+o0] p Looo, I)WTW
Noninjured 8 789 648 251135 [8 538 513, 9 040 783] 0.70 9 064 258 1.09
Severity 1 234 290 169 105 [65 185, 403 395] 0.69 480 108 1.45
Severity 2 74 584 54 918 [19 666, 129 502] 0.70 154 132 1.45
Severity 3 11 856 9121 [2735, 20977] 0.71 25 047 1.45
Fatality 23 405 18 017 [5388, 41422] 0.71 49 464 1.45

the community if they want to prepare to treat all the casualties with high confidence for the
earthquake scenario. The fifth column shows the distance from /¢, to u, normalized by ¢. For
all health states (except for noninjured health state), this normalized distance was 1.45. This
suggests that in the absence of the probability distribution of casualties, 4 + 1.45¢ could be
used to benchmark 7gq;.

The estimated number of fatalities and injuries with high severity is large, in which the mean
number of fatalities is approximately 23,000 out of the 10 million people living in Lima. These
results gives new insights into what may happen when the next Mw 8.8 earthquake strikes Lima.
As a point of reference, the 1746 Mw 8.8 earthquake occurred at night and caused almost 1,500
fatalities when only 60,000 people lived in Lima (Walker 2008). The predicted casualties in Lima
are comparable to the 1999 Mw 7.6 Izmit earthquake in Turkey, where approximately 17,000
people died (USGS 2015). The model estimated mean number of casualties with severity 3, 2,
and 1 of roughly 12,000, 75,000, and 234,000, respectively. It is challenging to know whether
these predicted demands on the hospital system are similar to the Izmit earthquake. The Izmit
earthquake caused 44,000 injuries, but there is no information of the severity of these injuries or if
these data are exhaustive (i.e., injuries are less likely to be reported than fatalities, especially low-
severity injuries). Future studies will collect the required data to investigate the 2007 Mw 8.0
Pisco earthquake and use the model to reproduce the close to 500 fatalities that occurred as a
result of the shaking.

Per District

The rates of casualty occurrence in each district are described here. These rates were
found by dividing the expected number of casualties in each district by the number of people
in the district. These expected values were calculated using Algorithm 2. Figure 7a shows
these rates in each of the districts and the global rate in the entire city. The districts are shown
in order of decreasing fatality rate, where the red bars represent the fatality rates, the blue bars
represent the rates of casualties with severity 3, and the green bars represent the casualties
with severity 2. The global rate was found by dividing the mean number of casualties in the
whole Lima city (see Table 1) over the total population. These rates are drawn using dashed
lines and the corresponding colors in Figure 7a. The districts with higher rates (i.e., the most
unsafe) are the ones closer to the rupture (along the coast), such as Barranco, La Punta, La
Perla, Villa El Salvador, and Callao. The districts in the periphery, such as Ate Vitarte and
San Juan de Lurigancho, are known for having most of their buildings without proper engi-
neering design; however, they do not rank at the top of the casualty rates. Located further
from the coastline, these districts tended to experience lower ground motions. It seems,
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Figure 7. Rates of casualties: (a) In districts; and (b) in structural typologies. Fatalities in red,
injured with severity 3 in blue, and injured with severity 2 in green. Dashed lines represent respec-
tive global rates in the whole Lima city.

therefore, that the large ground motions in the areas close to the rupture dominate the casualty
occurrence in this application. There is a high variability among districts in the resulting rates.
The lowest-rate district, Chaclacayo, has rates of fatality and casualty with severity 3 that are
almost two times smaller than the highest rate district, Barranco.

Per Structural Typology

The rates of casualty occurrence corresponding to each structural typology are described
here. The casualties rates for each structural typology were computed by dividing the sum of
expected number of casualties within buildings with the same structural typology by the total
number of occupants of these buildings. The expected values of the number of casualties
within each building typology were found using Algorithm 2. Figure 7b shows these
rates for each structural typology. The typology labels correspond to the 36 structural typol-
ogies in the city. They describe the structural system, the number of stories, and whether they
are ductile structures. The complete descriptions of these typologies and their associated
codes are provided in the online Appendix. The structural typologies are shown in
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order of decreasing fatality rate. In Figure 7b, the red bars represent the fatality rates, the blue
bars represent the rates of casualties with severity 3, and the green bars represent the casual-
ties with severity 2. The dashed lines with corresponding colors show the global casualty
rates in all the region. The graph shows that there is significant difference of the occupants’
casualty likelihood according to the building structural typology. The results indicate that
occupying a two-story adobe building increases the occupant fatality rate 20 times compared
with a ten-story ductile reinforced concrete wall building. The most dangerous structural
typologies (i.e., with highest casualties rates) are one- and two-story adobe and rammed
earth, two- and three-story unreinforced masonry, and three-story nonductile confined
masonry and nonductile concrete frames with infill. The wooden buildings are often con-
structed without proper seismic engineering design and with improper construction practices;
however, the results show that their casualty rates are among the lowest. This is because the
lightness of these structures makes them less vulnerable (less likely to collapse), and even if
they collapse, they are less likely to injure the occupants than other heavy structures
(e.g., masonry or concrete buildings).

Comparison with PAGER

In this subsection, the fatality rate estimated with the proposed model is compared with
the country-specific fatality rates estimated by PAGER for different modified Mercalli inten-
sities (MMI). The PAGER system uses quick estimations of MMI to predict fatalities imme-
diately after an earthquake. PAGER estimates the relationship between MMI and fatality
rates by performing regression analysis on previous country-specific earthquake fatality
data. The fatality rate measures the expected number of fatalities over the number of affected
population. Table 2 shows the comparison between PAGER fatality rates for Peru, Japan, and
Turkey, and the fatality rate resulting from the proposed casualty model. The parameters of
the PAGER fatality functions were obtained from Jaiswal et al. (2009) and Jaiswal and Wald
(2010). The PAGER system combines the total population exposure estimated at MMI IX
and X and refers to it as MMI [X+. The MMI X+ fatality rate is calculated as the MMI IX
rate, and MMI IX+ represents the maximum fatality rate in the PAGER analysis. It can be
seen that the fatality rate estimated with this model is almost ten-times higher than the
PAGER rates for MMI IX+. The fatality rate estimated with the model presented herein
was calculated to be 2.6 x 1073 fatalities per capita. The rate was estimated as the mean

Table 2. Comparison of fatality rates (i.e., number of earthquake fatalities per affected
population) with PAGER

Casualty model (this paper)

2.6 x 1073

PAGER (MMI)

Country Vil VIII IX+
Peru 33 x 1073 9.8 x 1073 2.4 x 1074
Japan 49 % 1078 3.2 %1075 2.4 %1073

Turkey 3.5%x 1076 8.0x 1074 2.4 %1072
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number of earthquake fatalities over the total population in the analysis. The PAGER rate is
2.6 x 10~ fatalities per capita for MMI IX+ for Peru.

As mentioned previously, PAGER performs a regression on country-specific data to esti-
mate fatality rates. PAGER rates are assumed to be time stationary. The data from large
earthquakes are combined without accounting for changes over time in the infrastructure
inventory and the vulnerabilities. The infrastructure inventory and its vulnerability vary
over time because of building seismic code improvement, the infrastructure’s deterioration,
or the incremental construction problem (Lallemant et al. 2017). Additionally, as large earth-
quakes are rare events, data are scarce, especially in locations where no large earthquakes
have occurred in recent decades (i.e., locations with long seismic gap). For example,
PAGER’s fatality rates in Peru were estimated from 33 previous earthquakes, in which
all of the fatalities were under 1,000 and only two out of the 33 earthquakes had fatalities
exceeding 100 (Jaiswal et al. 2009). In contrast, data from Japan and Turkey include earth-
quakes with a larger number of fatalities in recent years; therefore, their estimated fatality
rates are higher. The fatality rate for MMI IX+ in Japan is ten-times larger than the corre-
sponding rate in Peru. This is a striking difference as Japan is characterized by less vulnerable
infrastructure as a result of a more stringent seismic code with stricter enforcement than Peru.
The last row in Table 2 shows PAGER’s rates for Turkey. The rate for MMI IX+ in Turkey is
100-times larger than the one for Peru. This significant difference suggests that the fatality
rate for Peru is underestimated because of the lack of recent earthquakes with a large number
of fatalities. It should be noted, however, that the latest version of PAGER has a new version
of fatality rates. While the Turkey and Japan rates have not been changed significantly, the
Peru fatality rates have increased significantly. The new PAGER fatality rate for MII +1X in
Peru is 1.1 x 1073, which is much closer to the fatality rate found in this study (2.6 x 1073).
Further comments or conclusions cannot be drawn, as background and substantiating data for
the recent PAGER updates have not been found in the literature.

In summary, the observations outlined in this subsection indicate that the model pre-
sented in this paper can result in significantly different fatality rate estimates from
country-specific data-driven fatality models. The comparisons of the fatality rates among
different countries suggest that data-driven models could underestimate fatalities in countries
where earthquake fatality data are scarce and not recent. In countries where there have not
been recent earthquakes, this proposed model can be a more reliable alternative as it incor-
porates more detailed information in the analysis, such as occupancy levels at the time of the
earthquake and the current building exposure and vulnerabilities in the region of analysis.

Correlation Across Severities

The proposed model can also estimate the correlations among the different health states.
The correlation analysis across health states is key (1) to understand the dependencies across
casualty occurrence with multiple severities and (2) to provide the basis for analyzing the joint
probability distribution of multiseverity casualty occurrence. These correlations and joint dis-
tributions can be important for policy decisions such as multiseverity injury treatment. Pre-
event planning can be more rational and effective if information on the number of casualties
and their severities can be jointly predicted. Figure 8 shows the correlation matrix of the health
states as a heat map for Lima city and one district, San Bartolo (Figure 8a and 8b, respec-
tively). These correlation matrices were estimated using Algorithm 2. It can be seen that the
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Figure 8. Correlation matrix (as heat map) of the number of people in different health
states: (a) Lima city; and (b) San Bartolo district.

number of noninjured is negatively correlated with all the other health states. This is intuitively
expected, as a high number of noninjured population implies that there are few casualties. All
other health states are positively correlated among each other. In general, the model shows
strong correlations among health states. In Lima city, the correlations are close to 1 when
they are positive and close to —1 when negative. The districts with a fewer number of people
have slightly lower correlations close to 0.9 and —0.9, respectively. It was shown in Ceferino
et al. (2018) that the casualty severity covariance is evaluated by the sum of the average of all
covariance realizations and the covariance of all mean realizations. In the case of Lima, the
average of all covariance realizations is small compared with the covariance of the mean rea-
lizations. Thus the correlation is governed by the second term, namely, the covariance of the
mean realizations. In addition, the mean realizations show a strong linear trend, thus causing
high correlation of casualty severity. Though the correlations across health states are strong in
this analysis, further evaluations are needed to identify the specific factors of the case study (e.
g., large earthquake magnitude, extent of the geographic region of analysis, and vulnerable
infrastructure) that drive such strong correlations and whether this trend is particular to the
case study or if it can be generalized to other earthquake scenarios or other regions of analysis.

Correlation Across Multiple Districts

The model presented herein can also estimate the spatial correlations of casualty occur-
rence across several districts. This information is important for two reasons: (1) it provides an
understanding on the dependencies of the casualty occurrence in close-distance districts and
on how the degree of dependency drops off for more distant districts; and (2) it provides the
basis for understanding joint casualty occurrences in multiple districts, which is key for joint
hospital collaborative treatment of casualties across districts. These points will be further
shown in the next subsection.

Figure 9 shows the estimated correlograms for different casualties calculated using
Algorithm 2. For example, Figure 9a shows the correlogram for injuries with severity 3.
The coordinates of each black dot represent the correlation between the number of casualties
with severity 3 of two districts and the separation distance between the centroids of the
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Figure 9. Correlation between the number of casualties in two districts as function of the distance
between the districts: (a) Auto-correlogram for severity 3; and (b) cross-correlogram for severity 2
and severity 3.

districts. There are as many points as possible pairs of districts from the total set of 49 districts
(1,225 dots). The red line is the average correlogram resulting from the black points. The
correlogram shows that the correlation decays as a function of the separation distance. It starts
at 1 for 0 km, and it decreases to 0.5 (on average) for 30 km of separation. This correlation
decays to almost 0.35 at 50 km of separation. Figure 9b shows the cross-correlogram between
casualties of severity 2 and 3. This measures the correlation between the number of casualties
with severity 2 and 3 as a function of distance. It can be seen the cross-correlogram has as
high values as the correlograms for severity 3. Analytically, the cross-correlogram at distance
0 km equals the correlation between severity 2 and 3. According to the plot, this value is very
close to 1, which reflects the high correlations between different injury severities and
fatalities (see Figure 8).

Noncollaborative versus Collaborative Hospital Response

Finally, another potentially important use of this casualty model is evaluating how respond-
ing to casualties with collaboration across different districts increases the likelihood of success-
fully treating people. The following example shows evidence that supports this hypothesis.
First, the analysis focuses on casualties with severity 3 (1, ;) for five neighboring districts:
El Agustino, La Victoria, Lima, Brefia, and Rimac. It is assumed that the districts have medical
capacity (C,) to treat equal to 4 — ¢ in each district d. This assumption is made to reflect the
potential reduction in hospital capacity because of damage to the facility itself. The districts and
corresponding capacities are reported in Table 3. Additionally, the marginal probability of
meeting health care demands given these capacities are given in the third row of the table.
It can be seen that these marginals are very similar in all districts and close to 0.42. These
marginal responses indicate the probabilities of meeting the medical demands in the district
jurisdiction according to the corresponding medical resources in each of the districts.

At a higher management level, that is, for an emergency planner in charge of multiple
districts, the objective is that every district treats as many injured people as possible. If a
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Table 3. Assumed capacity and corresponding marginal reliability in each district

Districts El Agustino La Victoria Lima Brefia Rimac
Capacity (Cy) 138 107 360 42 60
Marginal (P[l, 4 < C,)) 0.42 0.42 0.42 0.42 0.43

noncollaborative hospital response is adopted across districts, each patient can only be treated
within his or her jurisdiction. Figure 10a shows the joint probabilities of casualties with
severity 3 in El Agustino and La Victoria districts and associated probability domain
where this noncollaborative policy will be successful. The domain where both districts
will meet the medical demands is shown in gray (i.e., the number of casualties is less
than the corresponding district medical capacity in both districts); the other part of the domain
is shown in red (i.e., the casualties were larger than corresponding district medical capacity in
at least one district). The second column of Table 4 shows the probability of satisfying
demands in both districts according to the noncollaborative policy. The probabilities of
the effectiveness of this policy (i.e., meeting the demands in all districts) for multiple districts
can be calculated using the same logic. The third, fourth, and fifth columns of Table 4 show
the probabilities for meeting demands in three, four, and five districts, respectively. As it can
be seen, when the number of communities increases, the probability of meeting the health
demands in all districts consistently reduces.

Severity 3
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Figure 10. Hospital response to casualties with severity 3 in El Agustino and La Victoria dis-
tricts: (a) Noncollaborative response; and (b) collaborative response. The probabilities masses
have been binned in intervals of width 5 for visualization purposes.
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Table 4. Noncollaborative versus collaborative response

Joint individual response Collaborative response
Districts PNy Insya < Cdl P01 Insya < 2201 Cal
El Agustino
La Victoria 0.32 0.40
Lima - 0.29 - 0.40
Brefia - - 0.24 - - 0.40
Rimac - - - 0.22 - - 0.40

However, if a collaborative policy is implemented in which the hospital system treats inju-
ries across different districts, then the probabilities of meeting the demands are higher com-
pared with the noncollaborative policy. Under this policy, hospitals will treat patients from any
other district, assuming that they have extra medical resources. For example, if El Agustino and
La Victoria districts act together, then the total capacity of both will be the sum of both indi-
vidual capacities. Similarly, the demands on the hospital system will be the sum of the demands
on each of the districts. Figure 10b shows the distribution of the sum of casualties with severity
3 in El Agustino and La Victoria districts; the gray region represents the successful events that
lead to treating all the casualties with severity 3 in both districts acting according to a colla-
borative policy. The red region, on the other hand, represents the events that exceeded the
medical capacity of the hospital system. The probability of a successful response of the col-
laborative hospital system for the two-district case is reported in the sixth column of Table 4.
Similarly, the probabilities for the three-, four- and five-district collaborative responses are
shown in the seventh, eight, and ninth columns in Table 4. These results indicate that the like-
lihood of meeting the health demands after an earthquake can significantly increase when hos-
pitals cooperate across different districts. In contrast to the noncollaborative policy, the
probability of meeting the health care demands in multiple districts is not reduced. Therefore,
when multiple communities are affected by an earthquake, the collaborative policy is more
effective than the noncollaborative policy.

CONCLUSIONS AND RECOMMENDATIONS

This paper presented the application of the probabilistic casualty model proposed in
Ceferino et al. (2018) to forecast the number of casualties and their severities in a region.
In addition, this paper shows how such forecasts can provide useful information for earth-
quake risk mitigation policy makers and earthquake emergency planners. The model appli-
cation was achieved through an earthquake scenario of Mw 8.8 occurring on the subduction
zone off the coast of Peru and affecting Lima city. The data of the study include the Earth-
quake Event definition, the Soil Condition information, the Building Structural Typology,
and the Building Occupancy Dynamics data. Additionally, the data requirements of the prob-
abilistic modules’ parameters are detailed, including the Ground Motion Intensity, the Build-
ing Damage, and the Population Health State modules.

This work shows the step-by-step procedure for implementing the two proposed algo-
rithms for solving the casualty model: Algorithm 1 based on Monte Carlo and Algorithm 2
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that combines Monte Carlo with the CLT. These procedures are used to estimate the mean
values, uncertainties, and dependencies of multiseverity casualties by propagating the
uncertainties and dependencies of ground motions, building damages, and building casualty
occurrences.

The application shows the estimation of the joint probability distribution of casualties with
multiple severities in Lima. Additionally, dependencies of casualties across different severities
and different communities (spatial dependencies) were studied. It was shown that there is a
positive correlation between casualty severities and a negative correlation between noninjured
states and casualty states. The paper also showed four other useful model outcomes through the
application. (1) Risk-informed demand-based hospital capacity targets: Hospital decision
makers can target the 90th percentiles of casualties (or chose other percentiles) when making
decisions on post earthquake hospital system target capacities. This information is unique, as
existing methodologies (e.g., HAZUS) provide only mean number of multiseverity casualties.
(2) Identification of urban districts and structural typologies with the highest casualty rates in a
region: These results can be used to inform policy making into the strengthening of the most
unsafe structural typologies in the region and focus on the most vulnerable districts.
(3) Casualty forecasting in regions with limited earthquake casualty data: The proposed
model provides multiseverity casualty estimates accounting for current population growth
and infrastructure vulnerability. This approach provides an advantage over country-specific,
empirical methods, as they may underestimate fatalities for regions where casualty data are
scarce and not recent. (4) Testing effectiveness of hospital system collaborative policies:
The model can be used to investigate various hospital system collaborative decisions. This
paper shows that hospitals that collaborate across multiple districts have a greater probability
of treating injuries than hospitals that do not collaborate, thus potentially leading to a higher
state of resilience for the city. This key result should encourage hospital systems to enforce
collaboration across different districts and to enhance their capacity for communication, coor-
dination, and transportation of patients.
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